Interdiffusion at Room Temperature in Cu-Ni(Fe) Nanolaminates
نویسندگان
چکیده
منابع مشابه
Room temperature spin valve effect in NiFe/WS₂/Co junctions.
The two-dimensional (2D) layered electronic materials of transition metal dichalcogenides (TMDCs) have been recently proposed as an emerging canddiate for spintronic applications. Here, we report the exfoliated single layer WS2-intelayer based spin valve effect in NiFe/WS2/Co junction from room temperature to 4.2 K. The ratio of relative magnetoresistance in spin valve effect increases from 0.1...
متن کاملElimination of formaldehyde over Cu-Al2O3 catalyst at room temperature.
Catalytic elimination of formaldehyde (HCHO) was investigated over Cu-Al2O3 catalyst at room temperature. The results indicated that no oxidation of HCHO into CO2 occurs at room temperature, but the adsorption of HCHO occurs on the catalyst surface. With the increase of gas hourly space velocity (GHSV) and inlet HCHO concentration, the time to reach saturation was shortened proportionally. The ...
متن کاملControlled synthesis of nanorods/nanorings of a novel Co-Cu complex in microemulsion at room temperature.
Novel Co-Cu complex nanorods with diameters of 100-200 nm and nanorings with a ring-diameter of 80 nm were synthesized via a microemulsion method at room temperature. Using this method, the addition of Co(NH3)(3+)6 to aqueous solutions of Cu(ii) in excessive carbonate promotes the assembly of a new highly charged carbonato-copper(ii) anion, [Cu4(OH)(CO3)8]9-.
متن کاملBF3/nano-γ-Al2O3 Promoted Knoevenagel Condensation at Room Temperature
The Knoevenagel condensation of aromatic aldehydes with barbituric acid, dimedone and malononitrile occurred in the presence of BF3/nano-γ-Al2O3 at room temperature in ethanol. This catalyst is characterized by powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and energy-disper...
متن کاملSynthesize of Superparamagnetic Zinc Ferrite Nanoparticles at Room Temperature
Superparamagnetic single phase zinc ferrite nanoparticles have been prepared by coprecipitation method at 20 °C without any subsequent calcination. The composition, crystallite size, microstructure and magnetic properties of the prepared nanoparticles were investigated using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Coatings
سال: 2018
ISSN: 2079-6412
DOI: 10.3390/coatings8060225